Convex function is an significant type of function. 凸函数是一类重要的函数。
We find out that the price variation and trading volume are correlated and the volume-price curve is a nonlinear convex function. 实证研究发现,中国股市成交价格波动和成交量之间具有相关关系,量价关系曲线为一非线性凸函数。
A Note of UV-algorithm to Finited Maximum Convex Function 有限最大值凸函数UV-算法的一个注记
Through research on the nature of a certain closed subinterval on convex function, this paper draws a theorem about the discrimination of convex function. 本文通过对凸函数上任一闭子区间性质的研究,得出一个关于凸函数的判别的一个定理。
On the effect boundary, risk is return's rigid monotony increase by degrees convex function, return is risk's rigid monotony increase by degrees concave function. 在有效前沿上,风险是收益的严格单调递增凸函数,收益是风险的严格单调递增凹函数。
An integral property of the convex function is generalized, and the some integral inequalities of the convex function are given. 给出了凸函数的一个积分性质的推广,并由此得到了凸函数的几个积分不等式。
For a general convex function, directional derivative is not convex. 对于一般的非凸函数,其方向导数不具备任何凸性,可以利用一般正齐次函数的回收函数来给出它的一个上凸近似。
Convex function of demand, convex distribution of price and an optimal model for coexistence of multi-prices are established. 建立了商品销售中的凸需求函数,凸分布和多种价格并存的优化模型。
Jensen type and Hadamard type inequalities of logarithmic convex function 对数凸函数的Jensen型和Hadamard型不等式
Monotonicity and Superadditive of Convex Function on Closed Interval 闭区间上凸函数的单调性与超加性
In this paper, several properties of convex function are generalized to the case of quasi convex function. 本文讨论了将凸函数的几个性质推广到拟凸函数的情形。
This paper establishes the conceptions of Fuzzy convex function on the Fuzzy value set. 本文首先在Fuzzy值集上建立了Fuzzy凸函数的概念,在此基础上研究了Fuzzy正项几何规划的有关性质。
Some criteria of convex function, strictly convex function and explicitly convex function are given in [ 1]. 文[1]给出了凸函数、严格凸函数、显凸函数的判别准则。
Define the concept of similarly convex function on interval. 定义了区间上似凸函数的概念。
This article emphasizes important application of convex function in inequality proving. 本文着重论述了凸函数在不等式证明中的重要应用。
Two calculating formulas of left or right derivative integration of convex function are proved and applied as well. 证明了凸函数的左(或右)导数积分的两个计算公式,并给出应用。
In this paper, some convex function inequalities are transplanted into geometric convex functions. 介绍了几何凸函数中与凸函数不等式相平行的几个不等式。
Pointwise saturation and properties of approximation to convex function for Meyer-Konig and Zeller operators on a simplex are discussed. 讨论了单纯形上Meyer-KonigandZeller算子的点态饱和性以及它对凸函数的逼近性质。
This paper proves the converse propositions of the higher order Cauchy Mean Value Theorem and higher order Lagrange Mean Value Theorem under concave and convex function and strictly concave and convex function. 在函数凹凸和严格凹凸的条件下,文章引出并证明了高阶Cauchy中值定理和高阶Lagrange中值定理的4个逆命题。
This method is global and superlinear convergent for the uniform convex function. 该算法对一致凸函数具有全局收敛性和超线性收敛性。
The two-parameters weighted mean in defined and an inequality for two-parameters weighted mean of convex function is prove, they have generalized and improved the results in literatures. 提出了函数的双参数加权平均的定义,证明了一个凸函数的双参数加权平均不等式,加强和推广了有关文献中的结果。
A theorem for continuous convex function is generalized. This is convenient for some summation inequalities. 推广了连续凸函数的一个定理,推广后尤其对某些连加不等式的证明,特别方便。
A class of generalized ( F, a,ρ, d)-convex function is defined in terms of clarke generalized gradient, the semi-infinite fractional programming with this kind of function is researched, some optimal conditions and duality are presented. 利用Clarke广义梯度,定义了一类广义(F,a,ρ,d)-凸函数,研究了具有这种函数性质的半无限分式规划,得出了一些最优性条件和对偶结果。
The author defines a symmetric mean about weakly logarithmically convex function and sets up its basic inequality. 利用弱对数性凸函数定义了一类对称平均,建立了其基本不等式。
The concept of generalized convex function of several variables is introduced. A material criterion is given. 引入了广义多元凸函数概念,并且给出了一个实用而简洁的广义多元凸函数的判据。
Infinitely many convex functions with quality factors better than that of the convex function in entropy were discovered. 发现了品质因数比熵中凸函数更好的无穷多凸函数。
Nature and Application of Convex Function 凸函数的性质和应用
Therefore, the convex function is very important in the optimized theory. 因此凸函数在最优化理论中占有特殊的地位。
In the traditional mathematics, the convex function and the generalized convex function are very important, because it involved the minimal and maximal of convex functions in convex set. 在传统数学中,凸函数与广义凸函数是很重要的,因为它涉及了凸集上凸函数的极大与极小问题。
Hadamard inequality was developed along with convex function. It is very important for theoretical and applied of convex function. Hadamard不等式随着凸函数的发展而发展,它是凸函数重要的理论和应用。